If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+80x=60
We move all terms to the left:
-16x^2+80x-(60)=0
a = -16; b = 80; c = -60;
Δ = b2-4ac
Δ = 802-4·(-16)·(-60)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-16\sqrt{10}}{2*-16}=\frac{-80-16\sqrt{10}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+16\sqrt{10}}{2*-16}=\frac{-80+16\sqrt{10}}{-32} $
| 2x-1/4x+1=0 | | V+7+3v=7 | | -1=2b-1+2 | | x(2x-4)=(2x+6)(x-2) | | 70=(b)(200) | | 3p-4-8p=-24 | | X^3-2x^2-x+80=0 | | 27-4x=3x-8 | | 1/3x+1/6x=27 | | 5x-3=3x+1) | | x2+1=5x | | 3/4{1/4x+8}-{1/2x+2}=3/8(4-x)-1/4 | | 1/3x-13=4 | | 3r-5+3=-8 | | -3+8(7x-4)=9-7(8x+3) | | 50-x=4x+10 | | t+15+6t-9=41 | | 4/5x-11=53 | | 4x+15=1+1x | | 12b-18=3b-12 | | 12p+4;=1.5 | | 5x+5=x+40 | | 8+3x=×+11+2x | | 2b-3(6)=b-4(3) | | X+5x+(4x-16)=180 | | 30a+1.6+1.4+2a=22.2 | | 26/6=5/h | | |2x-3|=2 | | 2p-p+1=10 | | 8x-41°=9x+17° | | 5x-(8x+8)=2x-13 | | X+(4x-16)+5x=180 |